Parabrachiella trichiuri (Copepoda, Siphonostomatoida) Parasitic on the Ribbonfish Trichiurus lepturus, a New Record of Korean Fauna

Il-Hoi Kim¹,⋆

¹Korea Institute of Coastal Ecology, Bucheon 14449, Korea

ABSTRACT

Parabrachiella trichiuri (Yamaguti, 1939), a copepod parasitic on the ribbonfish Trichiurus lepturus (Linnaeus, 1758), is recorded as a new record of Korean fauna. The copepod is the only known species of the family Lernaeopodidae parasitic on T. lepturus. Parabrachiella trichiuri can be differentiated from its congeners by a combination of characters: the trunk is pyriform, with two pairs of processes, the maxilla is less than half as long as the cephalothorax, and the genital process is not protruding from the margin of the trunk. This species had been assigned to different genera, such as Clavellopsis Wilson, 1915, Isobranchia Heegaard, 1947, and Neobrachiella Kabata, 1979.

Keywords: copepod parasite, Lernaeopodidae, fish host, Yellow Sea

INTRODUCTION

Fishes are hosts of various parasitic copepods. Copepods of the family Lernaeopodidae are parasites of fishes and consist of about 250 known species in 48 genera (Boxshall and Halsey, 2004; Piasecki et al., 2010). They parasitize mainly on the gills of their hosts but also occur in the mouth, nostrils, and other parts (Boxshall and Halsey, 2004). The females of these copepods firmly attach to the host tissues by means of the attachment organ which is transformed from the maxilla (Ho and Do, 1984). During a field survey made in 2021 along the southwestern coast of Korea, the author found a copepod parasite on the ribbonfish Trichiurus lepturus Linnaeus, 1758, a commercial fish in Korea. The copepod is identified as Parabrachiella trichiuri (Yamaguti, 1939), a new record of Korean fauna, and briefly described herein.

SYSTEMATIC ACCOUNTS

Order Siphonostomatoida Burmeister, 1835
Family Lernaeopodidae Milne Edwards, 1840
Genus Parabrachiella Wilson C.B., 1915

Parabrachiella trichiuri (Yamaguti, 1939) (Fig. 1)
Clavellopsis trichiuri Yamaguti, 1939: 562, Pl. 52, figs. 182–191.
Isobranchia trichiuri: Yamaguti, 1963: 260, Pl. 286, fig. 1.
Parabrachiella trichiuri: Piasecki et al., 2010: 61.

Material examined. Korea: 2 ♀ ♂ (each attached by 1 ♂) from palate of the ribbonfish Trichiurus lepturus Linnaeus, 1758, fish market, Jeollanam-do: Jindo-gun, Imhoe-myeon, Seomang, Chindo Island, 34°21′50″N, 126°08′01″E, 29 Mar 2021, coll. I.-H. Kim. One pair of specimens (HNIBRIV40) have been deposited in the Honam National Institute of Biological Resources (HNIBR), Mokpo, Korea.

Descriptive note. Female: Body (Fig. 1A) consisting of cephalothorax and trunk. Body length 3.27 mm in smaller dissected specimen, measured from tip of maxilla to posterior end of trunk. Cephalothorax cylindrical, slightly shorter than trunk, directed dorsally. Trunk (Fig. 1B) longer than wide (about 2.09×1.27 mm), with 2 pairs of long posterior processes; ventral pair shorter than dorsal pair, 1.05 mm long; dorsal pair 1.33 mm long. Genital process short but distinct (Fig. 1B). Egg sac (Fig. 1A) large, 2.72×0.76 mm. Caudal rami absent.

* To whom correspondence should be addressed
Tel: 82-32-624-2030, Fax: 82-32-624-2039
E-mail: ihkim@gwnu.ac.kr

Copyright © The Korean Society of Systematic Zoology
Fig. 1. *Parabrachiella trichiuri* (Yamaguti, 1939). Female: A, Habitus, right; B, Trunk, ventral; C, Antennule; D, Antenna; E, Endopod of antenna; F, Mandible; G, Maxillule; H, Maxilliped. Male: I, Habitus, right; J, Antenna; K, Maxilla; L, Maxilliped. Scale bars: A, B = 0.5 mm, C, E–G, J–L = 0.02 mm, D, H = 0.05 mm, I = 0.2 mm.
Antennule (Fig. 1C) 4-segmented; armature formula 0, 1, 1, and 5. Antenna (Fig. 1D) unsegmented, distally biramous; exopod expanded over endopod, covered with numerous spinules; endopod (Fig. 1E) distally bifurcate, with 3 broad setae on outer branch and many spinules on inner branch. Mandible (Fig. 1F) with 10 teeth, third distal one of them smaller than nearby teeth, and 2 small denticles proximal to teeth. Maxillule (Fig. 1G) biramous; exopod with 1 distal and 1 subdistal setae; endopod with 2 large distal and 1 small subdistal setae, and ornamented with several spines along inner margin. Maxilla transformed to attachment organ, short, tapering, with biramous tip (Fig. 1A). Maxilliped (Fig. 1H) subchelate, 2-segmented; proximal segment expanded, with 1 small seta on inner margin; distal segment bearing 2 small setae (proximal and distal) and terminated in claw. Legs absent. Male: Body (Fig. 1I) 0.75 mm long, covered with thick, transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature formula 1, 0, and 5; 2 of distal setae tubercle-like. Antenna 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk. Antennule 3-segmented, with armature transparent layer, with dorsal constriction between cephalothorax and trunk.

Distribution. Indo-West Pacific.

Remarks. The most detailed description of this species was provided by Ho and Do (1984) who placed it in the genus Neobrachiella Kabata, 1979. But Boxshall and Halsey (2004) gave Parabrachiella Wilson, 1915 priority over Neobrachiella. The genus Parabrachiella is speciose, containing 68 species and each species is highly host specific (Piasecki et al., 2010). The robbenfish Trichiurus lepturus, the host of P. trichiuri, is distributed widely in tropical and subtropical seas in the world and known as the host of more than 15 species of parasitic copepods (WoRMS Editorial Board, 2022), but P. trichiuri is the only species of the family Lernaeopodidae parasitic on that fish.

Castro Romero and Baeza Kuroki (1987) provided a key to females of species of Neobrachiella (now junior synonym of Parabrachiella). According to their key, P. trichiuri can be differentiated from its congener by (1) the pyriform trunk with two pairs of posterior processes; (2) the maxilla less than half as long as cephalothorax; (3) trunk pyriform; and (4) genital process not protruding from margin of trunk.

ORCID

Il-Hoi Kim: https://orcid.org/0000-0002-7332-0043

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

This research was supported by a grant from the Honam National Institute of Biological Resources (HNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (HNIBR202101101).

REFERENCES


Il-Hoi Kim: https://orcid.org/0000-0002-7332-0043